
Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 1

Advanced Programming
Language Features

and
Software Engineering:

Friend or Foe?

Greg Sullivan, AI Lab
gregs@ai.mit.edu

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 2

To Learn
• GOF Design Patterns. Overview, some patterns in

detail.
• Unusual Language Features, and their use in Design

Patterns
– Multiple dispatch
– Metaobject protocols,

• especially instantiation and dispatch
– Generalized Dynamic Types

To Ponder, Discuss
• Does programming language design have

something to do with software engineering?

• Relation to Programming & Modeling.
Process of,

Languages for

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 3

• Tinkers like programming.
• Alloy makes modeling more like

programming. More “executable”.
• What’s important about a model?

– Abstraction
– Declarative style

• How can programming languages enable
more abstraction, declarative style?

Tinkers and Thinkers
Declarative

Sequential,
Localized

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 4

The Tool Triangle

Execution
(performance,

feedback,
reality)

Execution
(performance,

feedback,
reality)

Analyzability
(correctness)

Analyzability
(correctness)

Abstraction
(declarativity)
Abstraction
(declarativity)

Pro
gra

mming
 La

ngu
age

s M
odeling Languages

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 5

Programming Language Features
for Abstraction, Declarative style

• Abstraction:
– Procedural (called abstractions in Λ calculus)
– Data abstraction (OO, modules/namespaces, ...)

• Declarative:
– Dynamic dispatch. Adds a level of indirection.
– Method combination.
– Exception handling.
– Aspect-Oriented Programming

• “crosscutting concerns”
– Constraint languages
– Reflection:

• Traditional: hacking the interpreter. Non-locality. Java
reflection – read-only.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 6

GOF Design Patterns
• Most are about adding indirection, abstraction.

– “Joints”
• An important part of current software engineering

dogma.
• Related, as is Alloy, to focus on lightweight

methods, XP, etc. Tools for the programmer more
than the designer.

• This talk doesn’t do the book justice. Much more
in the book than code.

• Each of 23 patterns has Intent, Also Known As,
Motivation, Applicability, Structure, Participants,
Collaborations, Consequences, Implementation,
Sample Code, Known Uses, Related Patterns.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 7

GLOS
Greg’s Little Object System

• Not interesting – representative.
• Added to Scheme: multiple dispatch,

method combination, multiple inheritance,
record subtyping with instantiation
protocol.

• First class: functions, methods (functions
with argument specializers), generic
functions (collections of methods, with
combiner function), types.

• Types / Specializers: primitive, and, or,
equal (singleton), predicate.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 8

Setup - Mazes
Maze* MazeGame::CreateMaze () {

Maze* aMaze = new Maze;
Room* r1 = new Room(1);
Room* r2 = new Room(2);
Door* theDoor = new Door(r1,

r2);

aMaze->AddRoom(r1);
aMaze->AddRoom(r2);

r1->SetSide(North, new Wall);
r1->SetSide(East, theDoor);
r1->SetSide(South, new Wall);
r1->SetSide(West, new Wall);

r2->SetSide(North, new Wall);
r2->SetSide(East, new Wall);
r2->SetSide(South, new Wall);
r2->SetSide(West, theDoor);

return aMaze;
}

Tedious,

Inflexible

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 9

Abstract Factory
Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 10

Abstract Factory in C++
class MazeFactory {

public:
MazeFactory();

virtual Maze* MakeMaze() const
{ return new Maze; }

virtual Wall* MakeWall() const
{ return new Wall; }

virtual Room* MakeRoom(int n) const
{ return new Room(n); }

virtual Door* MakeDoor(Room* r1, Room* r2)
const

{ return new Door(r1, r2); }
};

Maze* MazeGame::CreateMaze (MazeFactory& factory) {
Maze* aMaze = factory.MakeMaze();
Room* r1 = factory.MakeRoom(1);
Room* r2 = factory.MakeRoom(2);
Door* aDoor = factory.MakeDoor(r1, r2);

aMaze->AddRoom(r1);
aMaze->AddRoom(r2);

r1->SetSide(North, factory.MakeWall());
r1->SetSide(East, aDoor);
r1->SetSide(South, factory.MakeWall());
r1->SetSide(West, factory.MakeWall());

r2->SetSide(North, factory.MakeWall());
r2->SetSide(East, factory.MakeWall());
r2->SetSide(South, factory.MakeWall());
r2->SetSide(West, aDoor);

return aMaze;
}

class EnchantedMazeFactory : public MazeFactory {
public:

EnchantedMazeFactory();

virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()); }

virtual Door* MakeDoor(Room* r1, Room* r2) const
{ return new DoorNeedingSpell(r1, r2); }

protected:
Spell* CastSpell() const;

};

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 11

Abstract Factory in Smalltalk
createMaze: aFactory

| room1 room2 aDoor |
room1 := (aFactory make: #room) number: 1.
room2 := (aFactory make: #room) number: 2.
aDoor := (aFactory make: #door) from: room1 to: room2.
room1 atSide: #north put: (aFactory make: #wall).
room1 atSide: #east put: aDoor.
room1 atSide: #south put: (aFactory make: #wall).
room1 atSide: #west put: (aFactory make: #wall).
room2 atSide: #north put: (aFactory make: #wall).
room2 atSide: #east put: (aFactory make: #wall).
room2 atSide: #south put: (aFactory make: #wall).
room2 atSide: #west put: aDoor.
^ Maze new addRoom: room1; addRoom: room2; yourself

make: partName
^ (partCatalog at: partName) new

createMazeFactory
^ (MazeFactory new

addPart: Wall named: #wall;
addPart: Room named: #room;
addPart: Door named: #door;
yourself)

createMazeFactory
^ (MazeFactory new

addPart: Wall named: #wall;
addPart: EnchantedRoom named: #room;
addPart: DoorNeedingSpell named: #door;
yourself)

Uses 1st class
classes

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 12

Abstract Factory in GLOS
(defgeneric make-maze-element

(method ((f <maze-factory>) (eltType (== <wall>))) => <wall>
(new <wall>))

(method ((f <maze-factory>) (eltType (== <room>)) :rest args) => <room>
(apply new <room> args))

(method ((f <maze-factory>) (eltType (== <door>)) :rest args) => <door>
(apply new <door> args)))

...

Feature:
multiple
dispatch

(define room1 (make-maze-element the-factory <room> 'number 1))
(define room2 (make-maze-element the-factory <room> 'number 2))
(define door1 (make-maze-element the-factory <door> 'from room1 'to room2))

(defrectype <enchanted-maze-factory> (<maze-factory>) ())
(defrectype <enchanted-room> (<room>) ())
(gfmethod (make-maze-element (f <enchanted-maze-factory>)

(elt-type (== <room>)) :rest args)
(apply new <enchanted-room> args))

Feature:
singleton
types

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 13

Builder
Separate the construction of a complex object from its representation so
that the same construction process can create different representations.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 14

Builder in C++
class MazeBuilder {

public:
virtual void BuildMaze() { }
virtual void BuildRoom(int room) { }
virtual void BuildDoor(int roomFrom, int roomTo)

{ }
virtual Maze* GetMaze() { return 0; }

protected:
MazeBuilder();

};

Maze* MazeGame::CreateMaze (MazeBuilder& builder) {
builder.BuildMaze();
builder.BuildRoom(1);
builder.BuildRoom(2);
builder.BuildDoor(1, 2);
return builder.GetMaze();

}

(defrectype <maze-builder> () ())
(defgeneric create-maze

(method ((game <maze-game>)
(builder <maze-builder>))

(build-maze builder game)
(build-room builder game 1)
(build-room builder game 2)
(build-door builder game 1 2)
(get-maze builder)))

and GLOS

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 15

Builder, continued

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 16

Builder with Multiple Dispatch

(add-method* convert

(method ((builder <tex-converter>) (token <char>))

... convert TeX character ...)

(method ((builder <tex-converter>) (token))

... convert TeX font change ...)

(method ((builder <text-widget-converter>) (token <char>))

... convert text widget character ...)

(method ((builder <text-widget-converter>) (token))

... convert text widget font change ...))

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 17

Factory Method
Define an interface for creating an object, but let

subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 18

Factory Method – C++
class MazeGame {

public:
Maze* CreateMaze();

// factory methods:

virtual Maze* MakeMaze() const
{ return new Maze; }

virtual Room* MakeRoom(int n) const
{ return new Room(n); }

virtual Wall* MakeWall() const
{ return new Wall; }

virtual Door* MakeDoor(Room* r1, Room* r2) const
{ return new Door(r1, r2); }

};

Maze* MazeGame::CreateMaze () {
Maze* aMaze = MakeMaze();
Room* r1 = MakeRoom(1);
Room* r2 = MakeRoom(2);
Door* theDoor = MakeDoor(r1, r2);

aMaze->AddRoom(r1);
aMaze->AddRoom(r2);

r1->SetSide(North, MakeWall());
r1->SetSide(East, theDoor);

...
return aMaze;

}

class EnchantedMazeGame : public MazeGame {
public:

EnchantedMazeGame();

virtual Room* MakeRoom(int n) const
{ return new EnchantedRoom(n, CastSpell()); }

virtual Door* MakeDoor(Room* r1, Room* r2) const
{ return new DoorNeedingSpell(r1, r2); }

...

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 19

Factory Method - GLOS

(gfmethod (make (c (== <wall>)))
(make <bombed-wall>))

(gfmethod (make (c (== <room>)) (n <int>))
(make <bombed-room>))

• in CLOS, Dylan. Any others?

• in GLOS, new first calls make, then
initialize

Feature:

Instantiation
Protocol

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 20

Parameterized Factory Method

Product* MyCreator::Create (ProductId id) {
if (id == YOURS) return new MyProduct;
if (id == MINE) return new YourProduct;

// N.B.: switched YOURS and MINE

if (id == THEIRS) return new TheirProduct;

return Creator::Create(id); // called if all others fail
}

in C++

(add-method* make
(method ((c (== <product>)) (id (== 'mine)))

(make <my-product>))
(method ((c (== <product>)) (id (== 'yours)))

(make <your-product>)))

in GLOS
multiple dispatch,
singleton types, again

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 21

Decorator
Attach additional responsibilities to an object

dynamically. Decorators provide a flexible alternative
to subclassing for extending functionality.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 22

Decorator – C++
class BorderDecorator : public Decorator {

public:
BorderDecorator(VisualComponent*, int borderWidth);

virtual void Draw();
private:

void DrawBorder(int);
private:

int _width;
};

void BorderDecorator::Draw () {
Decorator::Draw();
DrawBorder(_width);

}
Window* window = new Window;
TextView* textView = new TextView;

window->SetContents(
new BorderDecorator(

new ScrollDecorator(textView), 1
)

);

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 23

Decorator - GLOS
(defgeneric draw

(method ((comp <visual-component>))
(format true "drawing visual-component~%"))

(method ((w <window>))
(draw (window-contents w)))

(defmethod (decorate (component <visual-component>)
(decoration <visual-component>))

(add-after-method draw
(method ((c (== component)))

(draw decoration))))

(defrectype <border-decorator> (<visual-component>)
((width <int>))
(width border-width set-border-width!))

(gfmethod (draw (comp <border-decorator>))
(draw-border (border-width comp)))

(define tv1 (new <text-view>))
(define w1 (new <window> 'contents tv1))
(decorate tv1 (new <scroll-decorator>))
(decorate tv1 (new <border-decorator> 'width 4))

Feature:
method
combination

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 24

Command
Encapsulate a request as an object, thereby letting
you parameterize clients with different requests,

queue or log requests, and support undoable
operations.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 25

Command in C++
class OpenCommand : public Command {

public:
OpenCommand(Application*);
virtual void Execute();

protected:
virtual const char* AskUser();

private:
Application* _application;
char* _response;

};

OpenCommand::OpenCommand (Application* a) {
_application = a;

}

void OpenCommand::Execute () {
const char* name = AskUser();

if (name != 0) {
Document* document = new Document(name);
_application->Add(document);
document->Open();

}
}

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 26

Command in GLOS
(define (make-open-command app)

(lambda ()
(let ((name (ask-user)))

(if name
(let ((doc (new <document> name)))

(add app doc)
(open doc))))))

...
(add-menuitem some-menu

(make-open-command the-app))
...
((menuitem-command some-menuitem))

Feature:
first class
functions

• In all functional languages, including Smalltalk.

• Doesn’t account for undo feature of pattern.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 27

Iterator (Internal) – C++
template <class Item>
class FilteringListTraverser {
public:

FilteringListTraverser(List<Item>* aList);
bool Traverse();

protected:
virtual bool ProcessItem(const Item&) = 0;
virtual bool TestItem(const Item&) = 0;

private:
ListIterator<Item> _iterator;

};
template <class Item>
void FilteringListTraverser<Item>::Traverse () {

bool result = false;
for (

_iterator.First();
!_iterator.IsDone();
_iterator.Next()

) {
if (TestItem(_iterator.CurrentItem())) {

result =
ProcessItem(_iterator.CurrentItem());

if (result == false) {
break;

}
}

}
return result;

}

class HighlyPaidEmployees :
public

FilteringListTraverser<Employee*> {
public:

HighlyPaidEmployees(List<Employee*>*
aList, int n) :

FilteringListTraverser<Employee*
>(aList),

_min(n) { }
protected:

bool ProcessItem(Employee* const&);
bool TestItem(const Employee&);

private:
int _total;
int _count;

};
bool HighlyPaidEmployees::ProcessItem

(Employee* const& e) {
_count++;
e->Print();

}
bool HighlyPaidEmployees::TestItem

(Employee* const& e) {
return e->Salary() > _min

}

List<Employee*>* employees;
// ...
HighlyPaidEmployees pa(employees, 100000);
pa.Traverse();

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 28

Internal Iterator in GLOS
(define employees (list ...))
(filter (lambda (e)

(> (employee-salary e) 100000))
employees)

• See also iteration protocol of Dylan

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 29

State
Allow an object to alter its behavior when its internal

state changes. The object will appear to change its class.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 30

State in C++
class TCPState;
class TCPConnection {
public:

void Open();
void Close();

private:
friend class TCPState;
void ChangeState(TCPState*);

private:
TCPState* _state;

};
class TCPState {
public:

virtual void Open(TCPConnection*);
virtual void Close(TCPConnection*);

protected:
void ChangeState(TCPConnection*, TCPState*);

};
TCPConnection::TCPConnection () {

_state = TCPClosed::Instance();
}
void TCPConnection::ChangeState (TCPState* s) {

_state = s;
}
void TCPConnection::Open () {

_state->Open(this);
}
void TCPConnection::Close () {

_state->Close(this);
}

void TCPState::Open (TCPConnection*) { }
void TCPState::Close (TCPConnection*) { }
void TCPState::ChangeState

(TCPConnection* t, TCPState* s) {
t->ChangeState(s);

}
class TCPEstablished : public TCPState {
public:

static TCPState* Instance();
virtual void Close(TCPConnection*);

};
class TCPListen : public TCPState {
public:

static TCPState* Instance();
virtual void Send(TCPConnection*);
// ...

};
class TCPClosed : public TCPState {
public:

static TCPState* Instance();
virtual void Open(TCPConnection*);
// ...

};
void TCPClosed::Open (TCPConnection* t) {

// send SYN, receive SYN, ACK, etc.
ChangeState(t,

TCPEstablished::Instance());
}
void TCPEstablished::Close (TCPConnection*
t) {

// send FIN, receive ACK of FIN
ChangeState(t, TCPListen::Instance());

}

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 31

State in GLOS
(defrectype <tcp-connection> ()

((status <symbol> 'closed))
(status connection-status

set-connection-status!))
(define <open>

(and? <tcp-connection>
(lambda (c)

(eq? 'open (connection-status c)))))
(define <closed>

(and? <tcp-connection>
(lambda (c)

(eq? 'closed (connection-status c)))))
(defgeneric open

(method ((c <tcp-connection>))
(error "Cannot open connection."))

(method ((c <closed>))
(set-connection-status! c 'open)))

(defgeneric transmit
(method ((c <tcp-connection>) data)

(error "Cannot transmit on connection."))
(method ((c <open>) data)

(format true "Transmitting: ~a~%" data)))
(defgeneric close

(method ((c <tcp-connection>))
(error "Cannot close connection."))

(method ((c <open>))
(set-connection-status! c 'closed)))

Feature:
predicate
types

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 32

Visitor

Represent an
operation to be
performed on the
elements of an
object structure.
Visitor lets you
define a new
operation without
changing the
classes of the
elements on
which it operates.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 33

Visitor, continued

• Mostly solved with multiple dispatch
(along with data structure traversal).
In single dispatch languages, this is
referred to as “double dispatch”.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 34

Summary: Language Features
• Protocols:

– Instantiation
– Method call

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 35

Relation to Modeling
• Modeling allow for pre-runtime verification
• Many of these language features, adding

dynamism, reflection, abstraction, make
programs more difficult to analyze
statically. Oops.

• Alloy focuses most on structural – these
language features mostly dynamic.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 36

Discussion
• Are all Design Patterns solvable with

advanced language features? (I used to
think so) Not so simple:
– some GOF patterns appear universal (Template

Method)
– any language, no matter what features, will

manifest its own design patterns.
– GOF book discusses design tradeoffs.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 37

Discussion, Continued
• Can Design Patterns be made 1st class?

– Can we instantiate design patterns?
– Maybe.

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 38

Design Pattern Catalog
Creational Patterns
Abstract Factory (87)

Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.

Builder (97)
Separate the construction of a complex object from its
representation so that the same construction process can create
different representations.

Factory Method (107)
Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses.

Prototype (117)
Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.

Singleton (127)
Ensure a class only has one instance, and provide a global point of
access to it.

Structural Patterns
Adapter (139)

Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

Bridge (151)
Decouple an abstraction from its implementation so that the two
can vary independently.

Composite (163)
Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Decorator (175)
Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.
Facade (185)
Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.

Flyweight (195)
Use sharing to support large numbers of fine-grained objects
efficiently.

Proxy (207)
Provide a surrogate or placeholder for another object to control
access to it.

Behavioral Patterns
Chain of Responsibility (223)

Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an
object handles it.

Command (233)
Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.

Interpreter (243)
Given a language, define a represention for its grammar along with
an interpreter that uses the representation to interpret
sentences in the language.

Iterator (257)
Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

Mediator (273)
Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their
interaction independently.

Memento (283)
Without violating encapsulation, capture and externalize an
object's internal state so that the object can be restored to this
state later.

Observer (293)
Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and
updated automatically.

State (305)
Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.

Strategy (315)
Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Template Method (325)
Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm's structure.

Visitor (331)
Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates

Programming Languages and Software Engineering - Greg Sullivan - April 10, 2002 39

More
• Chain of Responsibility: shows how 1st class

generics can be used.

