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CComputational reflection [5, 7] enables a program to access its

internal structure and behavior and also to programmatically

manipulate that structure, thereby modifying its behavior. Java pro-

vides some reflection capability. For example, a Java program can

ask for the class of a given object, find the methods on that class,

and then invoke one of those methods. Some

research groups, such as the DJ project at Northeast-

ern University [6], take advantage of Java reflection to implement

aspect-oriented features. A metaobject protocol (MOP) defines exe-

cution of an application in terms of behaviors implemented by

metaclasses (examples include Class or VirtualFunction).

For example, dynamic method dispatch may involve a method

named dispatch on virtual functions that takes as arguments the

values for a given call. The dispatch method would determine 
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the most applicable method given the arguments,
and then chain to that method implementation. A
programmer could override the default behavior of
the dispatch method in order to affect what hap-
pens when a virtual function is called. Java’s built-in
reflection capabilities fall short of a full MOP:

• Java’s reflection is “read-only.” For example, a
program can query the methods of a class, but a
program cannot dynamically change the methods
of a class. Full reflection allows modification of
any metainformation that can be reified.

• Java does not allow subclassing of metaclasses
such as Class and Method. With a full MOP,
subclassing metaclasses is a way to incrementally
change the default behavior of a language.

Java provides some dynamism with the
fairly heavyweight mechanism of
dynamic class loading. Other main-
stream programming languages,
such as C++, provide even less in
the way of computational reflec-
tion. Various research projects,
including one at E.M.N. in
France [3] have been work-
ing on providing MOPs
using reflection in support
of AOP. A MOP allows the
programmer to incremen-
tally modify the default behav-
ior of a programming language.
For the before, after, and around
advice of AspectJ (see the article by
Kiczales in this issue), one of the following strate-
gies might be utilized:

• Specialize the default behavior. For example, if
we want to add behavior to every call of a set of
virtual methods, we can specialize the MOP’s
dispatch method to each virtual method. The
version of dispatch for a specific virtual method
would perform the aspect-specific behavior and
then chain to the default dispatch method.

• Dynamically replace methods. A full reflection
protocol allows runtime method redefinition. If
we can identify which application methods are
affected by an aspect definition, we can replace
the default implementations of the methods with
“woven’’ versions.

In [2], Böllert uses reflection in Smalltalk to
dynamically add aspect behavior via inheritance and
dynamic method definition.

Advantages of Using a Runtime MOP
A MOP allows one to implement aspect code
directly, without a static compilation phase. This is
beneficial in several ways. Aspect behavior is more
robust in the face of dynamic events such as class
loading. Aspect languages based on static weaving
are fragile with respect to dynamic class loading,
because the newly loaded class code may not have
been processed by the weaver. Additionally, the
aspect logic has the entire runtime state and control
at its disposal. The points at which instrumentation
can take place are not limited by those points iden-
tified and modified by a static compilation process.

Another benefit is that the aspect code can make
decisions based on actual runtime values. Thus, the

aspect code can dynamically decide how
to instrument the running applica-

tion. Furthermore, the aspect code
can evolve over time, based on
runtime data. The AO behavior
can be both added and removed
at runtime.

In short, all conceivable AO
features that can be imple-
mented by a compilation
(also known as weaving)
implementation can also

be implemented by a run-
time MOP. Furthermore, the

AO behavior can be controlled and
monitored more flexibly and with finer gran-

ularity when implemented with a runtime MOP.
This is all well and good, but we need to answer the
following questions: How can we provide the pow-
erful functionality of MOPs without overwhelming
the programmer? Can we provide the functionality
of a runtime MOP with performance comparable
to more static approaches? We are making positive
progress addressing both of these 
questions. 

It has been observed that, when a MOP is avail-
able, uses of the more powerful and dynamic fea-
tures of the MOP are relatively rare; that is, most
individual methods do not use advanced features of
the MOP. Also, for any given application, use of the
MOP will tend to be fairly constrained and pre-
dictable. We take advantage of these observations
by using optimistic optimization. The idea is that,
after an application starts running, we produce,
using partial evaluation [4, 8] specialized versions of
the application’s methods that are optimized assum-
ing mutable parts of the MOP will not change. All
such optimistic optimizations are guarded, so that if
the assumptions upon which the optimizations are
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based are ever violated, the optimizations are
undone. For example, we are allowed to apply stan-
dard optimization techniques to call sites, but if at
runtime there are changes to the dispatch mecha-
nisms exposed by the MOP, we may have to undo
call site optimizations.

Assuming we have a full-featured MOP available
at runtime, how do we expose some of its features
to the programmer? As argued here, it is straight-
forward to implement the features of a general-pur-
pose AO language such as AspectJ using a MOP. It
should be noted that we have nothing against using
static techniques to “precompile’’ aspect behavior
and take some of the burden off the MOP. Jonathan
Bachrach at MIT has developed the Java Syntactic
Extender, a procedural macro system for Java [1]. A
powerful macro system, combined with a runtime
MOP, allows the programmer to design domain-
specific aspect languages for manipulating specific
crosscutting concerns. For example, if facilities for
monitoring system load and distributing processes
are exposed at runtime, it is straightforward to write
macros that facilitate programmer control over
dynamic process distribution.  
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