Dynamic Partial Evaluation

Gregory T. Sullivan
gregs@ai.mit.edu

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract. Dynamic partial evaluation performs partial evaluation as a
side effect of evaluation, with no previous static analysis required. A com-
pletely dynamic version of partial evaluation is not merely of theoretical
interest, but has practical applications, especially when applied to dy-
namic, reflective programming languages. Computational reflection, and
in particular the use of meta-object protocols (MOPs), provides a pow-
erful abstraction mechanism, providing programmatic “hooks” into the
interpreter semantics of the host programming language. Unfortunately,
a runtime MOP defeats many optimizations based on static analysis (for
example, the applicable methods at a call site may change over time,
even for the same types of arguments). Dynamic partial evaluation al-
lows us to apply partial evaluation techniques even in the context of a
meta-object protocol. We have implemented dynamic partial evaluation
as part of a Dynamic Virtual Machine intended to host dynamic, reflec-
tive object-oriented languages. In this paper, we present an implemen-
tation of dynamic partial evaluation for a simple language — a lambda
calculus extended with dynamic typing, subtyping, generic functions and
multiple dispatch.

1 Introduction

Our goal is the efficient implementation of dynamic, higher-order, reflective
object-oriented languages. Language features that we must support include dy-
namic typing, runtime method definition, first class types (with subtyping), first
class (and higher order) functions, and reflection.

The concept of a meta-object protocol (MOP) [KdR91] subsumes many of the
above-listed features. A MOP is based upon computational reflection [Mae87]
— giving a program access to its internal structure and behavior and allowing
programmatic manipulation of that structure and future behavior. A MOP en-
tails that the entities being returned by reflective operations and manipulated
programmatically be first class — thus the need for first class functions, types,
classes, etc. We want to at once support the power and abstraction of meta-
object protocols while at the same time providing efficient execution, especially
when MOP-related features are not being used. For example, if the MOP pro-
vides programmer control over method dispatch, but the programmer has not
used that feature, the implementation should not instrument every method call

2 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

in order to support the unused abstraction. The research described in this pa-
per is part of a project to implement a Dynamic Virtual Machine (DVM) — a
VM well-suited to hosting dynamic, reflective languages. The small formal lan-
guage Apvy presented in this paper is a simplified version of the DVM’s native
language, DVML.

Partial evaluation [JGS93] is a general technique for specializing parts of a
program with respect to known values. For example, if a function has multiple
arguments, and that function is called frequently with the same values for some
of the arguments, it may be worthwhile to create a specialized version of that
function for those common argument values. Within the body of the specialized
version of the function, we may be able to optimize away many computations that
depend solely on the values of the arguments against which we are specializing.

Experience has shown that many of the elements of a program exposed and
made mutable by a MOP (e.g. the class structure, methods of a virtual function,
method dispatch algorithm, etc.) in fact change only rarely at runtime. Thus
we may guardedly treat these aspects of an application as constant and then
apply partial evaluation techniques to remove computations that depend on
these mostly-constant program properties.

2 Related Work

A number of researchers have been drawn to using partial evaluation techniques
to eliminate overhead due to reflective operations. This is not surprising, as a
recurrent theme in partial evaluation research has been the elimination of “inter-
pretive overhead” (especially by using self application), and reflective operations
can be viewed as exposing an interpreter semantics to programs.

Masuhara et al. [MMAY95, MY98] use partial evaluation to eliminate in-
terpretive/reflective overhead in an object-oriented concurrent language. Par-
tial evaluation is performed as part of compilation, and impressive results are
recorded, with nearly all interpretive overhead removed in some cases. A limita-
tion of their system is that all possible effects on meta-level functionality must
be known at compile time. For example, if modification to the evaluation of vari-
ables will be effected at runtime, which modifications must be known at compile
time.

In [BNOO], Braux and Noyé use partial evaluation techniques to eliminate
reflection overhead in Java [GJSBO00]. Java provides limited reflection function-
ality, but no fine-grained MOP to manipulate the features covered by reflection.
For example, a Java program may query what methods belong to a class but
may not add or remove a method. Java does support coarse-grained redefinition
via dynamic class loading. The partial evaluation rules presented in [BNOOQ] are
specific to Java and would not work with a different language or runtime.

Runtime partial evaluation, as in [CN96, VCC97], defers some of the partial
evaluation process until actual data is available at runtime. However, the scope
and actions related to partial evaluation are largely decided at compile time.

Dynamic Partial Evaluation — PADO2 submission 3

Dynamic partial evaluation goes further, deferring all partial evaluation activity
to runtime.

The technique of specializing a function on finer types than originally de-
clared has been pursued by several research efforts — notably the Self [Cha92]
and Cecil [DCGI5] projects. In [VCC97] and [SLCM99], Volanchi, Schultz, et
al. use declarations and partial evaluation to achieve similar specialization for
object-oriented programs. The implementation of dynamic partial evaluation
presented in this paper also produces specialized versions of functions.

The runtime partial evaluation in [VCC97] includes the notion of guards
against future violation of invariants, and dynamic partial evaluation against
“likely invariants” also requires such guards. The idea of optimistic optimization
with respect to quasi-invariants has been pursued by Pu et al. in the Sythe-
sis [PMI88] and then Synthetix [PAB195] projects in the context of operating
systems.

3 Overview

We present an overview of the main concepts used in this paper, including dy-
namic partial evaluation, generic functions, and multiple dispatch.

3.1 Dynamic Partial Evaluation

Dynamic partial evaluation happens as a side-effect of evaluation. At runtime,
an expression is evaluated with respect to an environment that contains both
the usual dynamic bindings of identifiers to values, and also static bindings from
identifiers to types. The static component of the environment corresponds to
the symbolic environments of compile-time partial evaluation. In addition to
producing a value for the expression, dynamic partial evaluation produces a
residual version of the original expression based on the types in the environment.
The folding that occurs to produce a residual expression is the same as in online
partial evaluation — if the environment indicates that an identifier maps to a
fully static value (i.e. has a singleton type), then an expression based on that
identifier may be folded. Optimization may occur if a value is not fully static,
but its type is known. For example, if accurate types are known for argument
values before a call, dynamic type checks may be avoided.

Note that dynamic partial evaluation does not suffer from the “infinite un-
folding” issues of static partial evaluation. Because dynamic partial evaluation
happens during evaluation, partial evaluation only loops if the application loops.

While dynamic partial evaluation is defined at the expression level, control
and collection of the results of dynamic partial evaluation happen at the function
level. For example, suppose a function f (int x, Object y) is called repeatedly
with a value of 42 for x and with (different) instances of the Point class for y. For
one such invocation of f, the decision is made to evaluate the body with dynamic
partial evaluation enabled. For the duration of this call to f, every expression
is evaluated in an environment that maps x and y to both their actual concrete

4 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

values (42 for x, some Point instance for y), and also to the types eg(42)! and
Point. When the execution of f’s body is complete, we have both a concrete
value for this call, and also a new version of £’s body expression, specialized to
the signature (eq(42), Point). Within the body of the specialized version, we will
have performed any possible optimizations assuming that x is 42 and that y is an
instance of the Point class. The new, specialized version of f is then added to f’s
generic function (explained in the next section) and will be selected whenever
f is called with its first argument 42 and its second argument an instance of
Point.

Dynamic partial evaluation is intended to be used in conjunction with more
static techniques. However, the dynamic features of the languages we are target-
ing often preclude optimizations based on static analysis, and dynamic partial
evaluation gives us a valuable tool for optimizing in the face of extreme dy-
namism.

3.2 Generic Functions and Multiple Dispatch

The virtual machine in which we have implemented dynamic partial evalua-
tion provides generic functions and multiple dispatch. Generic functions and
multiple dispatch are used not just to model corresponding features in source
programming languages, but are also an integral part of our implementation
of dynamic partial evaluation. The key insight is that adding specialized meth-
ods to a generic function at runtime corresponds to polyvariant specialization in
compile-time partial evaluation, and the static notion of sharing is handled at
runtime via multiple dispatch.

A generic function is a set of “regular” functions and selection criteria for
choosing one of those functions (or signalling an error) for any given tuple of
arguments. In a single dispatch language, such as C++ or Java, a generic func-
tion corresponds to a virtual method, and the selection criteria is to find the
method defined in the class nearest above the receiver’s concrete class in the
class hierarchy. Multiple dispatch generalizes single dispatch in that more than
one argument may be used in the method selection process. For example, we
may define a generic function foo consisting of the following methods:

void foo(A this, A that); // method 1
void foo(B this, B that); // method 2
void foo(C this, B that); // method 3

Suppose that B is a subclass of A and C is also a subclass of A (and all classes

are instantiable). Then the following sequence of code:
A anA = new A(); B aB = new B(); C aC = new C();

foo(aC, anA); foo(aB, aC); foo(aB, aB); foo(aC, aB);
invokes methods 1, 1, 2, and 3 in order.

Support for generic functions and multiple dispatch serves two distinct pur-
poses in our system. First of all, we are interested in supporting languages with
“interesting” dispatch mechanisms, including multiple dispatch such as in Dylan

! The notation eq(v) denotes the singleton type containing exactly one value, namely
v.

Dynamic Partial Evaluation — PADO2 submission 5

and CLOS. Secondly, it is via the generic function and multiple dispatch mech-
anisms that we both cache and also invoke specialized versions of functions at
runtime. Consider the first call to foo, above. If the first call, foo(aC, anA), is
executed with dynamic partial evaluation enabled, we will get a new version of
method 1,

void foo(C this, A that); // method 4 (specialized version of method 1)

Within the body of the new method, dynamic dispatch based on, or dynamic type
checking of, the this argument may now be optimized under the assumption
that this is an instance of class C. After adding the new method to the foo
generic function, later calls to foo with arguments of class C and class A will
resolve to this newly created method.

4 A,yn, A Dynamically-typed Lambda Calculus with
Subtyping and Generic Functions

To clarify the mechanism of dynamic partial evaluation, we introduce Apvy, a
dynamically-typed lambda calculus with subtypes and generic functions. Fig-
ure 1 gives an operational semantics for this simple functional language. Apyvy
is modeled after, but much simpler than, DVML, the “native” language of the
Dynamic Virtual Machine. Among other things, DVML supports recursive func-
tions, predicate types, and more complicated function signatures. The syntax of
Apyw 18 given by the following grammar:

Ezp =2z | n | (if Ezp Exp Exp)
| (call Ezp Exp +) | (gf-call Ezp Exp +)
| (lambda ([Ezp|+) Ezp . Exp)

where z ranges over identifiers and n ranges over integers. Note the Ezp phrases
in lambda expressions for specifying the argument types and result type of a
function.

The evaluation relation = takes an expression e, an environment p, and a
type 7 to an extended value. Eztended values are triples of a tagged value, an
expression, and a type. A tagged value is a value for which the function type-of
returns a type. In Figure 1, upper case V’s range over extended values, and
lower case v’s over tagged values. There is syntax for creating integer, boolean,
and closure tagged values, and there are predefined functions for creating other
tagged values, including types, generic functions, mutable cells, and lists. A
type may be one of the predefined types or built from a type constructor — see
Figure 2 for some predefined values. Creating an extended value with tagged
value v, expression e and type 7 is denoted (v, e, 7).

Types are ordered as follows: all types are subtypes of T, L is a subtype of all
types, subtyping between types constructed using logical connectives is based on
implication, function types have the usual contravariant subtyping, a singleton
type eq(v) is a subtype of type-of(v), and there is a predefined function, subtype
for creating subtypes of (multiple) other types.

6 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

= C (Ezp x Env x Type) x ExtValue, ExtValue=TagValue X Exp xType

e refers to the expression being evaluated in the current rule., “—” means “don’t care”
v = some-operation binds v to the result of some-operation.

v ~ e’ deconstructs value v into its component parts.

p([z]) =V =~ (v,—,—Ywu; check(v,T) check(n, T)
|Il‘]] pT= ‘7:(67 <V>7p7 T) |In]] pT= -7:(67 ((nv €, eQ(n»U“l)apv T)
€0 P Tooot = Vo = (true, —, —)ou €0 P Tooot = Vo = (false, —, —)u
erpT=V e2prT=>V

[(ifeo e1 e2)] p 7= F(e, {V, Vo), p,7) [(ifeo e1 e2)] p 7 = Fle, (V,Vo),p,7)

€0 P Traw = Vi = (closure({[z1], ..., [@n])s (Turgys - -+ > Targy V> Tress €5 PF)y —» —Yuval
€ P Targg = Vi = (vi, €, Ti)ou, 1€1... 1
er prlzi = (vi, e, gIb(Ti, Turg;)Youll, glb(T, Tes) =V, i €1...m

[(calleg e1 ... en)]p 7= Fle,(V, V5, (Vi,..., Vo)), p,T)

eo p Ty = Vy = (generic(ms, (Toyy -+ 5 Ton Vs Tgres)s —5 —) vul

ei p Ty = Vi (vi, €, Tidoa, 1€EL1... 1

find-mam(ms, (V1,... , Vo)) =~ (Vy, static?)

Vi ~ (closure({[z1], .. , [Zn]), (Targrs - - - s Targy)s Tresy €5 PF)y —> —Vval
(specialize?, (spec-typey, ...)) = choose-specialization(Vy, Vi, (Vi,... , Vi)
arg-type;, = (specialize? =spec-type;; glb(Ti,Tury;)), 1€ 1... 0

er prlzi = (vi, ei, arg-type, o) glb(r, 1) =V, i €1... n

[(gf-calleg e1 ... en)]p 7 = F(e, F-vals, p,), where
F-vals = (V, V4, (V1, ..., Va), V}, static?, specialize?, (spec-type,, ...))

€r; P Tiype = V7'i = <UTi7 _7_>U“lv tel...n
€15 P Ttype = VTres =~ <U7'resa) _>"“l
vy = closure({[z1], ... , [zn])s (Vri)+ sV), Uriesy €0, P)

Vf = <Uf7 €, Eq(vf»ual 5 check(vf, T)
[(ambda(@1 ery, .., @n er)er,. - 0l p T = Fley (Vi (Voo , Vo), Vo, ,7)

Fig. 1. Apym, A Dynamically typed A Calculus with Subtyping and Generic Functions

Environments p map from identifiers to extended values. The dynamic context
is the projection of the environment as a map from identifiers to tagged values
(i.e. the tagged value component of the mapped-to extended value). The static
context is the projection of the environment as a map from identifiers to types
(i.e. the type component of the mapped-to extended value).

When evaluation of an expression is complete, the finish function F is called
with all the values relevant to the just-finished evaluation. F has type:
(Ezp, Vector(Value), Env, Type)— ExtValue, and F must maintain the invariant
that if e p7 = V ~ (v,e',7'),., the tagged value v satisfies type 7 (that is,

Dynamic Partial Evaluation — PADO2 submission 7

Predefined Types: T, L, Tiu, Toool, Trun, Tor fOr top, bottom, integers, booleans, func-
tions (closures), and generic functions, respectively.
Predefined Functions:

e and(conjunct-types), or(disjunct-types), not(type), fun(arg-types, result-type) — build
types from other types.

e type-of(v) returns the (concrete) type for a given tagged value v.

e check(v,) returns true if type-of(v) is equal to or a subtype of 7; otherwise, halts
with an error.

e static?(ert-val) For an extended value (v, e, T),u, returns true if 7 < eq(v) — that
is, if the value is completely static. We use < rather than = for type comparison
because our type system includes conjunctive types &7’ such that 7 < (r&7")
and 7' < (r&7').

o list(vi,... ,vn), closure(var, arg-type, result-type, body-exp, closure-env),
generic(list-of-methods, arg-type, return-type), subtype(list-of-supertypes), eq(val):
constructors for lists, closures, generic functions, subtypes, and singleton types,
respectively.

e add-method(generic, fun) adds a function (method) to a generic function.

o glb(list-of-types) constructs the greatest lower bound of its type arguments.

o find-mam(list-of-funs, arg-vals) selects the most applicable method given a set of
function (“methods”) and a vector of argument values. If there are no applica-
ble methods, find-mam halts with a “no applicable methods” error. If there are
multiple (non-comparable) most applicable methods, find-mam halts with an “am-
biguous methods” error. Otherwise, it returns the most applicable method and also
a flag indicating whether method selection was static (more on this in Section 4.2).

Fig. 2. Predefined values for Apyu

check(v,7)). For simple interpretation, we instantiate F as the finish function
fsimp:
fsimp(e) <V) e >,P,7') =V

Fuimp simply returns the first value in its value vector. Later, we will define a
finish function F,. that implements dynamic partial evaluation.

4.1 Discussion of Evaluation Rules

In Figure 1, the symbol e always refers to the expression being evaluated. A
rule subexpression of the form v = some-operation binds v to the result of
some-operation for use elsewhere in the rule. An expression of the form v ~ ¢’
deconstructs the value v, binding the variables mentioned in €. We use the
symbol — to indicate that we will not make use of the corresponding component
value.

var-ref: Evaluation of a variable reference x looks up the identifier z in the
environment, checks that it satisfies the current type context 7, and sends the
value to F (which, in the basic interpreter, simply returns the value).

8 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

integer: Evaluation of a numeric literal n checks the value n against the current
type context 7, constructs an extended value with a fully-static type, and then
sends the value to F.

if-true, if-false: Evaluation of an if expression first evaluates the test expression
ep in a boolean type context, producing Vj. Either the true branch, e;, or the
false branch, es, is evaluated, depending on the truth value of the tagged value
component of V4, and then the resulting value is sent to F, along with Vj.

call: Evaluation of a function call first evaluates the function expression eg in

a 7, type context. We then destructure the function value (closure) into its

bound variables ([z1],...,[z,]), argument types (T., ... ,Tuy,), result type
T..., body ey, and the closure’s creation environment py. Then the call’s argument
expressions e;, ¢ € 1...n are evaluated in type contexts of 7,,,. For the values to
which the function arguments will be bound, we create new extended values with
types that are the greatest lower bound of the static type 7; of the argument
value and the function’s argument type 7,,, for each argument position ¢ . Next
the body of the function, ey, is evaluated with the appropriately extended closure
creation environment and with a type context that is the greatest lower bound
of the function’s return type (7,..) and the current type context (7). Finally, all

relevant values are sent to F.

gf-call: Evaluation of a generic function call first evaluates and destructures its

generic function argument. A generic function consists of a triple: a set ms of
functions, aka “methods”, a vector of the argument types 7, , and the result
type 7y,... All functions closure(([z1], ..., [@n])s (Turys -+ > Tun,)> Tresr €, pf) in
ms must satisfy the following constraints:

1. r,,, <, for each index ¢, and

2. 7., <1y,
The generic function call arguments are then evaluated with respect to the ar-
gument types. Then the helper function find-mam, discussed in the next section,
is called to select the most applicable method from the set ms given the actual
argument values V;. The function choose-specialization decides whether or not
to produce a new method for this generic function (using the results of dy-
namic partial evaluation). If so, choose-specialization returns true and a vector
of argument types. If method specialization is not chosen, the arguments are
assigned types as in normal function call — the greatest lower bounds of the
declared argument types (of the most applicable method) and the static types
of the argument values. For simple interpretation, choose-specialization always
returns false. We discuss other scenarios in Section 5.1. The body e; of the most
applicable method is then invoked as in a normal function call.

abstraction: Evaluation of a lambda expression first evaluates the expressions
for the argument types, e,,, and result type, e, ., all of which must satisfy the
Tupe type. Then a closure is created, the value is checked against the current type
context 7, and the closure is sent to F.

Dynamic Partial Evaluation — PADO2 submission 9

4.2 Generic Function Method Selection

The helper function find-mam(ms, (V1,...,V,)) first finds the subset of ms that

are applicable given the argument values, V; ~ (v;, e}, Ti),u:

ms,,, = {f | fems & f =~ closure(([x1],. .., [@n]), (Tusys - -+ s Turg,) Tresr €8> PF)
& check(vi, 7.,),i €1...n}

If ms,,, is empty, a “no applicable method” error is flagged and execution halts.

Next a set of candidates for the most applicable method is derived (ideally a

singleton set):

mams = {f | f € ms,,, & f = closure({[a1], ., [2al), (Tams- - s Tumy)s T €55 1)
& (Af' € ms,, s.t.
! :, closure({[z1], - . s [0, (T{irgl, . ,T;,yn>, Tl e}, p})
& 1., < Tuy, foranyi€l...n)}

For any two applicable methods in ms,,,, if the argument types of one of the
methods are all < the corresponding argument types of the other, the second
(less specific) method is removed from consideration. It is not allowed for two
methods in a generic function to have identical argument type vectors. The set of
most applicable method candidates, mams, consists of applicable methods each
of which has an argument type vector that is incomparable to the argument
type vector of any other method in mams. If the set of most applicable method
candidates, mams, has exactly one element, that element is returned; otherwise,
an “ambiguous methods” error is signalled and execution halts.

find-mam must also keep track of whether the selection of the most applicable
method can be accomplished using only the type information in the extended
value tuples. For example, suppose the relevant type hierarchy is 7 < 71, the
single argument value V has a concrete type of 75, and there are methods for
the generic specialized on 75 and 7. If the static type of the argument value
is 7 (that is, V ~ (v, —,71).,, and check(v, 1)), the choice of method cannot
be determined statically (based on the static type alone). However, if the static
type is eq(v) or 72, then the method selection is static.

5 Instrumenting for Dynamic Partial Evaluation

Recall that extended values are triples (v : Tagged Value, e :Exp, T : Type),... In the
basic evaluator, only the tagged value component, v, is explicitly used. When
dynamic partial evaluation is in effect, the expression and type components of an
extended value become meaningful. In particular, the following holds (we write
=,. to indicate = [F,./F] and =, to indicate = [F...,/F], we use a dash
(—) for values we do not care about, and we write v : 7 for check(v,T) = true):
[dpe constraints | If e p 7 =,. (v,€',7'),., then
1. v: 7" (as well as v : 7 from the specification of F),
2. €epT =uimp (U, —, —)ou, and
3. For every environment p' that statically matches p,
ifep 7" =m (v, —, —).u then
(a) e PI T :>simp <UI7 Il _>vul7 and
(b) v 7'

10 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

An environment p’ statically matches an environment p if dom(p) C dom(p’)
and for all € dom(p), if p(x) = (—, —, 7)., then check(p'(x),) =true. That is,
the types of the bound variables match, though the values may be different.

The statement [dpe constraints] above specifies thatife p 7 = . (v,€',7"),u,
then the value v is of type 7’ and evaluating the expression with the simple evalu-
ator =, will return the same value v. Furthermore, evaluating the residualized
expression e’ in a statically matching environment p’ will produce the same value
as evaluating the original expression e in p'. In other words, any optimizations
that were done to produce e’ from e depended only on the types of the values in
the environment p — that is, the static context. Finally, all values produced by
evaluating e’ in any statically matching environment will be of type 7'.

5.1 F,. — a finish function that implements dynamic partial

evaluation

The finish function F,. implements dynamic partial evaluation and is defined
by structural induction on its expression argument. In the following, we present
each case for F,. along with some discussion.

Variable Reference: F,.([z],(V), p,T), where V ~ (v, e/, 7'},

= if static?(V') & expressible-as-literal?(v) - if static and a literal
(v,[v],7")u — we can fold to a constant
v

Both the value and the static type for a variable reference come directly from
the environment. If the value is completely static and expressible as a literal
(that is, an integer or a boolean), the variable reference may be replaced by the
corresponding literal expression.

Literals: F,.([n],(V),p,7) =V

A literal is always completely static — that is, a given literal expression will

always return the same value, no matter in what static context it is evaluated.
The reduction relation = ensures that for literals, F will be called with a fully-
static value.

Conditionals: F,.([(ifeg €1 e2)], (V, Vo), p,7), where V ~ (v,€e/,7"),, and V ~
(V05 €0 T0)

= if static?(Vy) — if test val is a constant,
V' — we can eliminate the conditional
if v — otherwise, rebuild the conditional
(v, [(if ey € e2)], Thou
(v, [(if ey er €], Thou

The decision whether or not to fold a conditional expression depends on whether
or not the test expression is completely static. If the test expression is completely
static, the if expression folds away. Otherwise, we rebuild the conditional with
the residuals of the the test expression and the chosen branch. Note that the
static type returned for the value is only T.

Dynamic Partial Evaluation — PADO2 submission 11

An important optimization for conditionals is the case when eq is a variable
reference. In that case, the chosen branch may be evaluated with the environment
mapping the test variable to the singleton type of either eq(true) or eq(false). This
is in fact always the case for the Dynamic Virtual Machine, where expressions
are all in essentially static single assignment form, but we do not present that
optimization here.

Function call: F,.([(calleg e1 ... €x)],(V, Vs, (Vi,..., Vo)), p,7), where
Vo (v,e, ')y Vi = (v, €5, T vw, Vi = (i €, Ti) oy € 1. .m, and
vy = closure(([z1], .. s [@n])s (Tureys - -+ > Tung,)> Trews PF)

= if static?(Vy) —if fun is a constant,

if static?(V) - and return val is a constant, finish-known-function
(v, val2exp(v), '), — fold call
if inline?(vy) — if fun is a constant, may choose to inline
inline-call(V, Ve, (Vi,... , Vo), p,7)
— here if fun is constant, but not inlining
(v, [(call € €] ...en)], T uu
— here if fun value is not constant
(v, [(calley e ... €n)], T)ou

Finishing a function call involves choosing one of several options:

1. Fold the call to either a literal or a variable reference expression.
This can only be done if the value of the call is completely static. Folding
to a variable reference may involve extending the current environment with
a new binding. Residualizing a constant is handled by the function valZezp,
whose logic is outside the scope of this paper.

2. Inline the residualized body of the closure at the call site; pre-
ceded by any argument type checks that did not statically succeed. Inlining
may also involve extending the current environment, to handle references
to variables closed over by the inlined function. Inlining is handled by the
function inline-call, again outside the scope of this paper.

3. Replace the call by an unchecked call; preceded by any argument
type checks that did not statically succeed.

4. Leave the call as is.

For option 3, the language needs to be extended with operations that do less
type checking than base Apvy, be we do not discuss those in this paper. Note
that if the function value is static, but we choose not to inline, we may still use
the the declared return type of the function for the static type of the returned
value.

Generic Function Call: 7, ([(gf-calleg e1 ... ey)], F-vals, p,), where F-vals =
(Vi Vg, (Vi, ..., Vi), Vy, static?, specialize?, (spec-type,,...)), V = (v, e, ') ,u,
va = <Ug)) _>oah Vg = generic(ms, <Ty17 s 7T!/n>7 TgTes))

Vi o~ (closure({[z1], .- -, [2n])s (Turys -+ s Turg, s Trews €f5 PF)s = =) vats

12 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

, .
and V; ~ (v;, €, 7)oy TE€1... 10

= if specialize?
add-method(vg, closure({[z1], - . . , [zn]), (spec-type;,...), e, pr))
if static?(V,) — if generic is a constant,
if (static?) —if can statically dispatch
... finish-known-function . ..
(v, [(gf-call e} €] ...€,)], 7.0 — can’t statically dispatch
— here if generic is not a constant
(v,€, T

If method specialization was chosen, finishing a generic function call adds a
new method to the generic function?, using the residualized body of the applied
method for the closure body, the argument types determined by choose-specialization,
and other attributes from the original closure.

Technical note: Actually, the closure environment is extended with bindings for

any static values exposed during inlining that are not expressible as literals and

instead bound to fresh variables.
In the Dynamic Virtual Machine, the logic abstracted by choose-specialization
simply uses programmer-defined rules, in the spirit of [VCC97], to decide when
to create specialized versions of generic function methods.

If method specialization was not chosen, then we test whether the generic
function value is constant and the most applicable method can be chosen based
strictly on the static types of its arguments. In that case, finishing proceeds as in
the case for a regular function call when the function argument is static. Recall
from Section 4.2 that method selection is considered not static if at least one of
the methods of the generic function is not applicable according to the concrete
argument types, but is potentially applicable according to the static types of the
arguments.

Abstraction: F,.([(lambda(zy e;,... ,2n er,)er., - €0)], Ve, Vo, oo, Ve), Ve 0, 7),
where Vi ~ (v, e, Tf)ou, Vi, = (vr, €L, —)ufori€ ... n, Vo~ (v el =)

!
SRR

1T €7,)7, €0)], s)

Lambda abstraction produces a closure value. To finish an abstraction, we return
the closure, a rebuilt abstraction expression using the residual expressions from
the type expressions, and the singleton type constructed by =.

= (v, [(lambda(z; e

6 Examples of Dynamic Partial Evaluation

We give a few examples of how dynamic partial evaluation works in practice.

6.1 A Contrived Example
Suppose we are dynamically partially evaluating the following expression (where
(let(z 7) =egine;) is a macro for ((lambda(z 7)T . e1) ep)):

2 In the DVM, method addition is contingent on there being some useful optimization
during specialization.

Dynamic Partial Evaluation — PADO2 submission 13

(let (a T)=(if (> 50) 34)in
(let (¢ 7..) = (if (> d0) 56)in
(gf-call g ab)))
in the following environment:

b— (1,1, eq(1)),u

d— (1,1, 7.) vu

g (generic((gl, 92>7 <T>7 T)7 ™ eq(g»mla

where g1 = closure((z, y), (T, T), T, [(+ = 9)], py,)
g2 = closure((z,y), (T, 7.}, T, [2]. pyo)

The identifier b is statically bound to the integer 1. d is also bound to 1, but
has static type 7... The identifier g is statically bound?® to a generic function of
two methods — one with the most general specializers, and one specialized on
integer values for its second argument. The first expression to evaluate is (> b 0).
Because b is completely static, the result value, trueis completely static and the if
expression can be folded. The result of the if expression is the fully static value 3.
The identifier a is bound to the value 3, with residual expression 3, and gets static
type eq(3), which is the greatest lower bound (glb) of the declared type T and
the result type eq(3) of the expression. The comparison (> d 0) also evaluates to
true, but the value is not completely static because the static type of d is 7;,,. The
identifier ¢ is bound to the value 5, residual expression (if (> d 0) 5 6), and gets
static type 7, which is the glb of the declared type 7., and the type of the result
of the expression, namely T. The most applicable method for the call to g is g-.
Furthermore, static type 7, of variable c is sufficient to statically select the most
applicable method at the call, so the gf-call can be replaced by a simple call to
g2. When the body of g5 is executed, it returns the value of its first argument, a,
which is fully static. Because the method can be statically selected, and because
the result of the call is a fully static value, the whole gf-call expression can be
folded to the literal expression 3. Thus the expression residualizes to:

let (¢ 7,.) = (if (> d0)56)in 3

Dead variable elimination may eliminate the now useless let construct.

6.2 Example: Dynamic Partial Evaluation of Reflection in Java

In [BNOO], Braux and Noyé use partial evaluation techniques to eliminate re-
flection overhead in Java. The rules they introduce are specific to the reflection
APT of Java. Dynamic partial evaluation provides a general mechanism that
automatically eliminates the reflection overhead addressed by Braux and Noyé.

Following is the main example from [BN0O]:
public static void dumpFields(Object anObj) throws java.lang.IllegalAccessException {
Field[] fields = anObj.getClass().getFieldsQ);
for (int i = 0; i < fields.length; i++)
System.out.println(fields[i].getName() + ": " + fields[i].get(anObj));

}
If dumpFields is called often on a specific class, say Point, it is worthwhile
to create a specialized version of dumpFields specific to Point. Assume for

3 g (=, —, eq(g)),u means that g is completely static.

14 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

now that the Point class has no subclasses. Within the specialized version of
dumpFields, most of the reflection overhead can be folded away — the call to
getClass will always return the Point class, and getFields will always return
an array containing the x and y Fields. Of course, the actual values of x and y
are dynamic — that is, they will will vary between invocations of the method.
After partial evaluation, the specialized method should be something like:

public static void dumpFieldsPoint(Point anObj) {
System.out.println("x: "+anObj.x); System.out.println("y: "+anObj.y); }

We have an implementation of the relevant parts of the Java runtime, and a translation
from Java into the Dynamic Virtual Machine (DVM). The above example, in the case
that Point has no subclasses, folds to DVM code analogous to that given above, and a
method specialized on Point is added to the dumpFields generic function. Thereafter,
calls to dumpFields with Point arguments automatically select the optimized version.

Furthermore, if later calls to dumpFields take place within the context of special-
izing some other generic function, and the argument is statically bound to Point, the
optimized code may be inlined into the calling method, and so on.

7 Conclusions and Future Work

Dynamic partial evaluation is a technique for instrumenting interpretation in order to
perform partial evaluation actions as a side effect of evaluation. This is accomplished
by interpreting expressions in an environment that maps identifiers not only to values
but also to types. The type of a variable can be understood as “how much information
dynamic partial evaluation is allowed to assume about this binding.”

Dynamic partial evaluation has been implemented as part of a Dynamic Virtual
Machine designed to host dynamic, reflective, higher-order languages with subtyping.
In the current implementation, dynamic partial evaluation is always “on” — that is,
evaluation always creates residual expressions and tracks static types. We would like
to be able to dynamically switch between dynamic partial evaluation and simple inter-
pretation — suffering the overhead of dynamic partial evaluation only when we know
we will use the results.

As far as when to enable dynamic partial evaluation of a method, we currently
specify rules by hand, in the spirit of [VCC97]. We plan to use dynamically generated
profile data to decide when and where to do dynamic partial evaluation. Note that we
are focusing on highly reflective runtime environments, so profile data should be readily
available. We also plan on using more sophisticated techniques for deciding when to
inline function bodies.

The current implementation of dynamic partial evaluation includes “optimistic”
optimization with respect to rarely mutable values. We give a brief description of this
technique in Appendix A, but leave in depth presentation to another forum.

Acknowledgements

Many thanks to Julia Lawall for reading initial drafts of this paper — the paper is much
better thanks to her insightful comments. Thanks also to Mitch Wand for valuable
discussions.

Dynamic Partial Evaluation — PADO2 submission 15

References

[BNOO]

[Cha92]

[CN96]

[DCGY5]

[GISB0O]

[JGS93]

[KdR1]

[Mae87]

[MMAY?95]

[MY98]

[PAB*95]

Mathias Braux and Jacques Noye. Towards partially evaluating reflection
in java. In Proceedings of the 2000 ACM SIGPLAN Workshop on Evalua-
tion and Semantics-Based Program Manipulation (PEPM-00), pages 2-11,
N.Y., January 22-23 2000. ACM Press.

Craig Chambers. The Design and Implementation of the Self Compiler, an
Optimizing Compiler for Object-Oriented Programming Languages. PhD
thesis, Computer Science Department, Stanford University, March 1992.
Charles Consel and Frangois Noél. A general approach for run-time spe-
cialization and its application to C. In ACM, editor, Conference record
of POPL ’96, 28rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the Symposium: St. Peters-
burg Beach, Florida, 21-24 January 1996, pages 145-156, New York, NY,
USA, 1996. ACM Press.

Jeffrey Dean, Craig Chambers, and David Grove. Selective specializa-
tion for object-oriented languages. In Proceedings of the ACM SIG-
PLAN’95 Conference on Programming Language Design and Implemen-
tation (PLDI), pages 93-102, La Jolla, California, 18-21 June 1995. SIG-
PLAN Notices 30(6), June 1995.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. The Java Series. Addison-Wesley, Boston,
Mass., 2000.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International, Interna-
tional Series in Computer Science, June 1993. ISBN number 0-13-020249-5
(pbk).

Gregor Kiczales and Jim des Rivieres. The art of the metaobject protocol.
MIT Press, Cambridge, MA, USA, 1991.

Pattie Maes. Concepts and experiments in computational reflection. In
Norman Meyrowitz, editor, Proceedings of the 2nd Annual Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’87), pages 147-155, Orlando, FL, USA, October 1987. ACM
Press.

Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai, and Akinori
Yonezawa. Compiling away the meta-level in object-oriented concurrent
reflective languages using partial evaluation. In OOPSLA ’95 Conference
Proceedings: Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 300-315. ACM Press, 1995.

Hidehiko Masuhara and Akinori Yonezawa. Design and partial evaluation
of meta-objects for a concurrent reflective language. In Eric Jul, editor,
ECOOP ’98—Object-Oriented Programming, volume 1445 of Lecture Notes
in Computer Science, pages 418-439. Springer, 1998.

Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan,
Jon Inouye, Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Op-
timistic incremental specialization: Streamlining a commercial operating
system. In Proc. 15th ACM Symposium on Operating Systems Princi-
ples, Copper Mountain CO (USA), December 1995. http://www.irisa.fr/
EXTERNE/projet/lande/consel/papers/spec-sosp.ps.gz.

16 Gregory T. Sullivan (DRAFT of November 10, 2000 at 10:48)

[PMISS]

[SLCMO9]

[VCCo7]

Calton Pu, Henry Massalin, and John Ioannidis. The synthesis kernel.
In USENIX Association, editor, Computing Systems, Winter, 1988., vol-
ume 1, pages 11-32, Berkeley, CA, USA, Winter 1988. USENIX.

U. P. Schultz, J. L. Lawall, C. Consel, and G. Muller. Towards auto-
matic specialization of Java programs. Lecture Notes in Computer Science,
1628:367-77, 1999.

Eugen N. Volanschi, Charles Consel, and Crispin Cowan. Declarative spe-
cialization of object-oriented programs. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA-97), volume 32, 10 of ACM SIGPLAN No-
tices, pages 286-300, New York, October 5-9 1997. ACM Press.

Dynamic Partial Evaluation — PADO2 submission 17

A Optimistic Dynamic Partial Evaluation

As was mentioned in the introduction, we want to optimize with respect to “quasi-
invariants” — in particular, elements of the meta-object protocol (MOP) that are tech-
nically mutable but rarely modified in practice. In the interest of simplicity, we have
omitted from this paper the machinery to perform optimistic dynamic partial evalu-
ation, but the Dynamic Virtual Machine does implement dynamic partial evaluation
with respect to quasi-invariants. We briefly describe our implementation of optimistic
dynamic partial evaluation.

In the Dynamic Virtual Machine, there are two mutable datatypes: cells and generic
functions. A cell contains a single value that may be changed, and a generic function
may be modified by updating its method list. As dynamic partial evaluation proceeds,
each optimization (folding, inlining) notes any cells or generic functions that have been
referenced. When a new method is added to a generic function as a result of dynamic
partial evaluation, all referenced cells and referenced generic functions are instrumented
to undo the optimization if mutated. For example, suppose we are evaluating a generic
function call (gf-call g x), and let us call the most applicable method g1. Further
suppose that method g1 has a body that calls generic function h. When the generic
function call finishes, we have a specialized version of gl — let’s call it g2 — that is
added to the method list of g. The dependency on generic function h is registered, and
if at some later point the methods of h are modified, then g2 will be removed from the
method list of g. In the Dynamic Virtual Machine, cells and generic functions exposed
by the MOP are considered “quasi-invariant” and dynamic partial evaluation tracks
references to them.

